
Stdg Reference Manual

Stdg 4.4 by Loki copyright _ 1993

Stdg can be distributed in an unmodified form freely.
It should not be distributed for commercial gain.

Stdg can also be used freely for non-commercial purposes.
If you wish to write commercial applications with it,

please see the accompanying readme file.

All function and structure definitions can be found in the "stdg.h" include file.
The library is currently only implemented for the C programming language,
but exists on both the Apple Macintosh and Microsoft Windows platforms.

Initialisation
SYNOPSIS

int main(int argc, char **argv);
void ginit(char *name, voidfn *adjust_menus, menu *menubar);
void gexit(void);
void gflush(void);

extern void (*gerror)(char *errstr);

extern bitmap * screen;
extern font * sys_font;
extern font * fixed_font;
extern cursor * current_cursor;
extern window * active_window;
extern short menu_item;

DESCRIPTION

The program begins in the main function, which must be defined as shown. The arguments and the
return value will only have meaning on UNIX platforms.

The function ginit initialises the structures necessary to use the library's graphics interface. The name
argument specifies the name of the application, which can be sent to its environment if necessary. The
name is used on UNIX platforms to uniquely specify a resource directory where application resources
are kept. The adjust_menus function is called just after the user clicks in the application's menubar, and
just before any menus are displayed. It can thus ensure the menus correctly reflect the current state of
the program.

The menubar argument is a NULL terminated array of menus, each menu being a NULL terminated
array of menuitems. An application has only one menubar, which may be displayed at the top of the
screen, or at the top of the first window the application creates depending on the environment the
program is running in.

The gexit function disposes of the application's graphical resources, and should be called at the end of
each program. It will close all of the application's windows as part of its actions.

Graphics operations on some platforms (such as X-Windows) may be buffered, and for those platforms
calling gflush ensures all pending graphics requests are processed. On other platforms the function
exists and does nothing. All event handling routines call gflush, so usually it will not be necessary to
call it.

If the gerror function is not NULL, it will be called by the library whenever an internal error occurs.
The default error function displays the error string errstr in a window, and after the user clicks with the
mouse, the gexit function is called and the program ends. If gerror is NULL, no error will be raised and
the programmer will have the opportunity of testing for the error condition by checking return values.
The programmer can set gerror to be a custom error reporting function, as long as its calling interface

is the same.

Upon initialisation, the library sets screen to be the bitmap of the screen. The screen bitmap can be
used to find the depth or size of the screen, but it is not guaranteed that drawing to the screen bitmap
will work. The sys_font is the platform's normal system font and fixed_font is a fixed width font for
use by the application. The current_cursor is guaranteed to point to the currently displayed program
cursor. The active_window pointer will always point to the active application window, or be NULL if
there is no such window. The variable menu_item is set by the library to be the array index of the last
selected menu item.

Basic Structures
SYNOPSIS

typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;

struct point {
long x; /* horizontal co-ordinate */
long y; /* vertical co-ordinate */

};

struct rectangle {
point min; /* top-left point inside rectangle */
point max; /* bottom-right outside rectangle */

};

DESCRIPTION

A point is a location in a bitmap (see below), and is defined as:

struct point { long x; long y;};

The coordinate system has x increasing to the right and y increasing down.

A rectangle is a rectangular area in a bitmap.

struct rectangle { point min; point max; };

By definition, min.x <= max.x and min.y <= max.y. By convention, the right (maximum x) and
bottom (maximum y) edges are excluded from the represented rectangle, so abutting rectangles have no
points in common. Thus, max contains the coordinates of the first point beyond the rectangle.

Bitmaps
SYNOPSIS

struct bitmap {
rectangle r; /* rectangle in data area, local coords */
short depth; /* depth = number of bits per pixel */
uchar * bits; /* bitmap data */

};

bitmap * new_bitmap(rectangle r, short depth);
bitmap * get_bitmap(char *name, short depth);
void del_bitmap(bitmap *b);

DESCRIPTION

A bitmap holds a rectangular image.

struct bitmap { rectangle r; short depth; uchar *bits; };

The rectangle r specifies the bitmap's size in pixels. A bitmap need not have a zero origin. There are
depth contiguous bits for each pixel of the image; the bits form a binary number encoding each pixel's
colour. Bits is a pointer used internally by the library to access the bitmap.

New_bitmap creates and returns a pointer to a new white-filled bitmap. The rectangle r is the pixel size
of the bitmap and depth is the number of bits per pixel. Depths of 1, 2, 4, 8, 16 and 32 bits per pixel
are supported on the Macintosh, while depths of 1 and 4 are supported by most VGA drivers for PC
compatibles. If an error occurs, gerror will be called, or the function will return NULL if gerror is
NULL.

Get_bitmap searches the application's resources for a bitmap of the required name and depth, and
returns the bitmap or NULL if it cannot be found. Del_bitmap de-allocates the memory used by b. If
any of the bitmap functions are passed a depth of zero, the screen's depth will be substituted. If a
bitmap of the required depth cannot be located, one of a lesser depth may be returned instead.

Windows
SYNOPSIS

typedef void (winfn)(window *); /* window function */

struct window {
bitmap * b; /* bitmap for the window */
rectangle r; /* window rectangle on screen */
ulong flags; /* window appearance bit array */
short kind; /* user data can be stored here */
void * data; /* user data can be stored here */
winfn * close; /* called before window is closed */
winfn * resize; /* called after window is resized */
winfn * redraw; /* called when window must be redrawn */

};

#define Simple 0x0000
#define Visible 0x0001
#define Buffered 0x0002
#define Titlebar 0x0004
#define Closebox 0x0008
#define Maximize 0x0010
#define Resize 0x0020
#define Attentive 0x0040
#define DoubleClicks 0x0080
#define Modal 0x0100
#define Floating 0x0200
#define Workspace 0x0400
#define Document 0x0800

window * new_window(char *name, rectangle r, ushort flags);
void set_winfns(window *w, winfn *close, winfn *size, winfn *draw);
void set_winname(window *w, char *newname);
void del_window(window *w);
void show_window(window *w);
void hide_window(window *w);

DESCRIPTION

A window is a bitmap as displayed on screen. A window's bitmap is guaranteed to have a zero origin,
which corresponds with its top-left point on screen.

struct window { bitmap *b; rectangle r; ulong flags; short kind; void *data;
winfn *close; winfn *resize; winfn *redraw; };

B points to the represented bitmap, and can be used for drawing. R holds the location of the window's
bitmap on the screen in screen co-ordinates, while flags is a bit-field describing the window's

appearance and behaviour. The kind integer and the data pointer can be used by the programmer; they
are initialised to zero and then ignored by the library.

The winfns are called by the window manager in response to certain user actions. The close function is
called when the user attempts to close the window. If no such function exists, the default behaviour is
for the window to be hidden. The resize function is called when the window is resized, and can be used
to recalculate the window's appearance. The redraw function is called after the window has been
resized or when a part of the window has been exposed, and should redraw the entire window. All of
the winfns are passed a pointer to the affected window.

New_window creates and returns a pointer to a window with the given name. The rectangle r specifies
where the window's bitmap rectangle appears on the screen, with zero being the top-left point of the
screen. If an error occurs, gerror will be called, or the function will return NULL if gerror is NULL.

The flags argument is a bit-field. Titlebar gives the window a titlebar which can be used for moving it
around the screen and also for displaying the window's name. Closebox gives the user a way of closing
the window. Maximize gives the user a way of increasing the size of the window to its maximum, and
Resize gives the user a method of changing the size of the window.

Attentive windows will receive the mouse click which activates them. Windows created with the
DoubleClicks flag will produce mouse events which have the DoubleClick bit set in their kind field if
the user clicks rapidly and repeatedly with the mouse buttons. Modal means the window will be in
front of all other application windows when it is displayed, and no events will be sent to the other
windows until it is hidden. Floating windows will appear in front of all other application windows
even when not active.

A Workspace window can contain many Document windows. The appearance of these windows
depends on the platform. Only one Workspace window can be created per application, but any number
of Document windows can appear within it. On the Macintosh, a Workspace window will just be the
screen and will have no window structure, but under Windows it is a normal window. Document
windows automatically have the following flags set: Titlebar, Closebox, Maximize, Resize.

The Buffered flag is set by the library if the window requires the use of the gflush function for its
contents to be drawn to the screen. The Visible flag is set by the library when the window is visible.
New windows are invisible. The menubar, titlebars, resize boxes and window outlines are neither part
of the screen bitmap nor a window's bitmap.

Set_winfns sets the functions to be called when the window is closed, resized or redrawn. Set_winname
changes the name of the window as shown the window's titlebar. Del_window de-allocates the
specified window, hiding it first if necessary. Show_window shows the specified window on the screen
and ensures it is the frontmost application window. Hide_window causes the specified window to
vanish from the screen.

Arithmetic functions
SYNOPSIS

#define dx(r) ((r).max.x-(r).min.x)
#define dy(r) ((r).max.y-(r).min.y)

point pt(long x, long y);
rectangle rect(long minx, long miny, long maxx, long maxy);
rectangle rdiag(long minx, long miny, long width, long height);
rectangle rpt(point min, point max);

point addp(point p1, point p2);
point subp(point p1, point p2);
point mulp(point p, long i);
point divp(point p, long i);
rectangle raddp(rectangle r, point p);
rectangle rsubp(rectangle r, point p);
rectangle mulr(rectangle r, long i);
rectangle divr(rectangle r, long i);
rectangle insetr(rectangle r, long i);
rectangle rcanon(rectangle r);
short pinr(point p, rectangle r);
short rxr(rectangle r1, rectangle r2);
short eqp(point p1, point p2);
short eqr(rectangle r1, rectangle r2);
short rclip(rectangle *r1, rectangle r2);

DESCRIPTION

The functions pt, rect, rdiag and rpt construct geometrical data types from their components. The
macros dx and dy give the width and height of a rectangle.

Addp returns the point sum of its arguments: pt(p.x+q.x, p.y+q.y). Subp returns the point difference of
its arguments: pt(p.x-q.x, p.y-q.y). Mulp returns the point pt(p.x*a, p.y*a). Divp returns the point
pt(p.x/a, p.y/a).

Raddp returns the rectangle rpt(addp(r.min, p), addp(r.max, p)); rsubp returns the rectangle
rpt(subp(r.min, p), subp(r.max, p)). Mulr returns the rectangle rpt(mulp(r.min, a), mulp(r.max, a));
Divr returns the rectangle rpt(divpt(r.min, a), divpt(r.max, a)).

Insetr returns the rectangle rect(r.min.x+n, r.min.y+n, r.max.x-n, r.max.y-n).

Rcanon returns a rectangle with the same extent as r, canonicalized so that min.x <= max.x, and min.y
<= max.y.

Pinr returns 1 if p is a point within r, and 0 otherwise. Rxr returns 1 if r1 and r2 share any point, and 0
otherwise. Eqp compares its argument points and returns 0 if unequal, 1 if equal. Eqr does the same for

its argument rectangles.

Rclip clips the rectangle pointed to by r1 so that it is completely contained within r2. The return value
is 1 if any part of *r1 is within r2. Otherwise, the return value is 0 and *r1 is unchanged.

Cursors & Fonts
SYNOPSIS

struct cursor {
point offset; /* bitmap offset from mouse location */
uchar white[2*16]; /* white mask */
uchar black[2*16]; /* black shape */
void * cp; /* library data: initialise to NULL */

};

struct font {
short height; /* height of a line */
short ascent; /* top of bitmap to baseline */
short descent; /* baseline to descender */

};

cursor * get_cursor(char *name);
void set_cursor(cursor *c);
font * get_font(char *name, char *style, ushort size);

DESCRIPTION

A cursor is put in this structure:

struct cursor { point offset; uchar white[2*16]; uchar black[2*16]; void *cp; };

The arrays are to be arranged in rows, two characters per row, to give 16 rows of 16 bits each. A cursor
is displayed on the screen by adding offset to the current mouse position, using white as a mask to
white out the pixels where white is 1, and then setting all pixels to black where black is 1.

The get_cursor function finds a cursor with the given name in the application's resources and returns a
pointer to it. If the named cursor cannot be found, the function will call gerror, or return NULL if
gerror is NULL. The set_cursor function will change the application's cursor to the specified one. The
cp field must be set to NULL initially if the cursor is from application data; it is used internally by the
library.

A font is a typeface of a certain point size.

struct font {short height; short ascent; short descent; };

The height is the distance in pixels from the top of one line of text to the top of the next. The ascent
and descent are respectively the distances above and below the font's baseline that the font characters
actually extend.

The get_font function returns a pointer to a required font. A font has a name, a style and a size in
points. The style is specified as a string containing space or comma separated words defining the style.
An example style string might be "Bold, italic". The function returns NULL if the font cannot be

obtained.

Drawing functions
SYNOPSIS

typedef ulong pixval;

void bit_copy(bitmap *db, point p, bitmap *sb, rectangle r, pixval v);
void texture_rect(bitmap *db, rectangle r, bitmap *sb, pixval v);
void invert_rect(bitmap *db, rectangle r);
void fill_rect(bitmap *db, rectangle r, pixval v);
void draw_rect(bitmap *db, rectangle r, long w, pixval v);

void draw_point(bitmap *db, point p, pixval v);
void draw_line(bitmap *db, point p1, point p2, pixval v);
void draw_arc(bitmap *db, point p0, point p1, point p2, pixval v);
void fill_circle(bitmap *db, point p, long r, pixval v);
void draw_circle(bitmap *db, point p, long r, pixval v);
void fill_ellipse(bitmap *db, point p, long r1, long r2, pixval v);
void draw_ellipse(bitmap *db, point p, long r1, long r2, pixval v);
point draw_string(bitmap *db, point p, font *f, char *s, pixval v);
long strwidth(font *f, char *s);
point strsize(font *f, char *s);

/* Transfer code pixvals for drawing operations */

enum {
Zeros = 0x00, DnorS = 0x01,
DandnotS = 0x02, notS = 0x03,
notDandS = 0x04, notD = 0x05,
DxorS = 0x06, DnandS = 0x07,
DandS = 0x08, DxnorS = 0x09,
D = 0x0A, DornotS = 0x0B,
S = 0x0C, notDorS = 0x0D,
DorS = 0x0E, Ones = 0x0F

}

/* Colour pixvals */

#define BLACK 0x00000000L
#define WHITE 0xFFFFFF00L
#define BLUE 0x0000FF00L
#define YELLOW 0xFFFF0000L
#define GREEN 0x00FF0000L
#define MAGENTA 0xFF00FF00L
#define RED 0xFF000000L
#define CYAN 0x00FFFF00L
#define GREY 0x7F7F7F00L
#define LTGREY 0xBFBFBF00L

#define DKGREY 0x3F3F3F00L

DESCRIPTION

All of the drawing operations draw into a destination bitmap db. Some operations transfer pixel values
from a source bitmap sb, while most take pixel values given in a pixval argument v. A pixval is a data
type which has two purposes: to specify how to compute each destination pixel as a function of source
and destination pixels; and to supply a source pixel value for those drawing operations that do not take
source pixel values from another bitmap.

The high three bytes of a pixval is used to specify the source colour, using the red-green-blue scheme.
The highest byte encodes the intensity of red light, the second highest byte encodes the intensity of
green light, and the third highest byte encodes the intensity of blue light.

The lowest byte of a pixval holds a transfer code. The sixteen transfer code pixvals give all possible
bitwise operations of the source S and destination D. For the purposes of these bitwise operations,
black will always have a pixel value equal to all zeros, while white will have a pixel value which is all
ones. If a source colour is specified but the transfer code is left as zero, the transfer code S is assumed
(which just has the effect of copying the source colour into the destination bitmap).

Black and white can always be represented in a bitmap, while other colours may have to be
approximated. For bitmaps of depth 1, all colours except grey are mapped to either black or white as
follows: hues near blue, red and magenta will map to solid black, while lighter hues near green, cyan
and yellow will map to solid white. The grey pixval will result in dithering to produce a grey effect.
This will work with text and all line drawing, but may not always give desirable results when drawing
thin lines. For depth 2, colours will still map to black or white, but grey will map to a solid grey. For
depths greater than 2, better approximations are used.

Bit_copy takes bits from rectangle r in the source bitmap sb, and overlays them on a congruent
rectangle with the min corner at point p in the destination bitmap db. The v parameter is used to
specify how source and destination bitmap pixels are combined, so that its colour component is
ignored.

If the source and destination bitmaps have different depths, the source rectangle is first converted to
have the same depth as the destination. All of the drawing graphics functions clip the rectangle against
the source and destination bitmaps, so that only pixels within the destination bitmap are changed, and
none are changed that would have come from areas outside the source bitmap.

Texture_rect fills the rectangle r in the destination bitmap db with copies of the source bitmap sb. The
copies are aligned so that repeating patterns will look correct. It also ignores the colour component of
v, but uses it as a transfer code. Invert_rect inverts black and white in the required rectangle. Inversion
of coloured areas is not guaranteed to produce the desired results.

Fill_rect fills a rectangle with a certain colour, specified as a pixval v. Draw_rect draws four lines of
width w within the given rectangle. If w is negative, draw_rect draws the lines outside the given
rectangle. The lines will be of a colour and transfer code specified by v.

Draw_point changes the value of the destination point p in bitmap db to the required pixel value v.
Draw_line draws a line segment in bitmap db with a pixel value v from point p1 to p2. The segment is

half-open: p1 is the first point of the segment and p2 is the first point beyond the segment, so adjacent
segments sharing endpoints abut.

Draw_arc draws a circular arc centred on p0, travelling anti-clockwise from p1 to p2, or to a point on
the line passing through p0 and p2. The arc will be one pixel thick and of pixel value v. Fill_circle fills
a circle centred on p with radius r using the pixel value v. Draw_circle draws a one pixel thick circle of
the given pixel value instead of filling it. Fill_ellipse and draw_ellipse are similar, except the
horizontal semi-axis is r1 and vertical semi-axis is r2.

Draw_string draws the text characters given by the null-terminated string s into bitmap db, using font f
and pixel value v. The upper left corner of the first character (i.e., a point that is f->ascent above the
baseline) is placed at point p, and subsequent characters are placed on the same baseline, displaced to
the right by the previous character's width. Draw_string returns the point in the destination bitmap after
the final character of s (or where the final character would be drawn, assuming no clipping; the
returned value might be outside the destination bitmap).

The bounding box for text to be drawn with draw_string in font f can be found with strsize; it returns
the max point of the bounding box, assuming a min point of (0,0). Strwidth returns the x-component of
the max point.

Menus
SYNOPSIS

typedef void voidfn(void); /* function which takes no arguments and returns nothing */

struct menuitem {
char * name; /* name of menu item, NULL=end of list */
ushort key; /* key equivalent, 0=none */
short * state; /* pointer to state variable */
voidfn * action; /* action to perform when item is chosen */

};

typedef menuitem *menu; /* array of menuitem pointers, NULL terminated */

#define Disabled 0x00
#define Enabled 0x01
#define Ticked 0x02

extern short menu_item; /* array index of last selected item */

DESCRIPTION

A menuitem is a single item in a menu. A menu is an array of menuitems terminated by an empty
menuitem.

struct menuitem { char *name; short key; char *state; voidfn *action; };
typedef menuitem *menu;

The first menuitem in a menu designates the name of the entire menu. Each menuitem has a name, and
can have a shortcut key. Holding down Control or Command while pressing this key has the effect of
selecting that menuitem.

The appearance of the menuitem is determined by a state variable pointed to by state. The item can be
Enabled or Disabled (grey), and may optionally be Ticked. If state is NULL, the item is disabled. The
action function is called when the item is selected. The library global menu_item is set to the array
index of the selected item when action is called. The third item in a menu after the menu's name will
thus cause menu_item to be set to three if it is selected.

Every application can have a menubar. A menubar is a NULL terminated array of menus. On
Macintosh platforms, the menubar will appear in its normal place at the top of the screen. On Windows
and X-Windows platforms, the menubar will appear in the first window the program creates. The
menubar is passed as an argument to ginit.

If a menu's first item (the menu's name) is disabled, all of the items in that menu will be disabled,
except the name itself. This provides a way of de-activating an entire menu without modifying the state
of each item separately.

The menuitem states can be modified during the adjust_menus function, which is one of the arguments
to ginit. The adjust_menus function is called just before any menus are actually displayed, and can
ensure that the current state of the menus matches the program's state.

Mouse Events
SYNOPSIS

struct mouse {
uchar kind; /* mouse event kind bit array */
uchar buttons; /* mouse button state bit array: LMR=124 */
point xy; /* location of mouse */

};

#define NoButton 0x00
#define LeftButton 0x01
#define MiddleButton 0x02
#define RightButton 0x04

#define MouseMove 0x00
#define MouseDown 0x10
#define MouseUp 0x20
#define MouseTimer 0x40
#define DoubleClick 0x80

#define LeftButtonDown (MouseDown | LeftButton)
#define MiddleButtonDown (MouseDown | MiddleButton)
#define RightButtonDown (MouseDown | RightButton)
#define LeftButtonUp (MouseUp | LeftButton)
#define MiddleButtonUp (MouseUp | MiddleButton)
#define RightButtonUp (MouseUp | RightButton)

DESCRIPTION

A mouse structure contains information about the mouse's location, button state and activities:

struct mouse { uchar kind; uchar buttons; point xy };

Kind is a bit field which reports what kind of mouse event has just occurred. If the mouse was just
moved, kind will be set to MouseMove. If the mouse timer mechanism (see below) has just timed out
the kind will be MouseTimer. If one of the mouse buttons has been pressed or released the kind field
will be set to a combination of bits.

Which button was pressed or released is recorded in the low four bits of the kind field; these low four
bits will be one of LeftButton, MiddleButton or RightButton. If a button was pressed, the kind field
will have the MouseDown bit set. If a button was released the MouseUp bit will be set. If the window
from which the mouse event came has the DoubleClicks flag set, a rapid repeated pressing of a mouse
button will cause the second MouseDown event to also have the DoubleClick bit set in its kind field.
The definitions LeftButtonDown through to RightButtonUp are for convenience only.

Buttons is bit field which describes the current state of the mouse buttons; buttons&LeftButton is set
when the left mouse button is depressed, buttons&MiddleButton when the middle button is

depressed, and buttons&RightButton when the right button is depressed.

For mouses with less that three buttons, the middle and right buttons can be simulated. Holding down
the Control or Option key and pressing a mouse button is the same as depressing the middle button,
while holding down the Shift key and pressing a mouse button is the same as depressing the right
button.

The mouse position is found in the point xy. This location will be relative to the window for which the
event was generated. A window's top left point is (0,0).

Events
SYNOPSIS

short start_timer(long msec);
short set_mouse_delay(long msec);
void delay(long msec);
short can_event(void);
short can_timer(void);
short can_mouse(window *w);
short can_key(window *w);
long get_timer(void);
mouse get_mouse(window *w);
ushort get_key(window *w);
void unget_mouse(window *w, mouse m);
void unget_key(window *w, ushort k);

DESCRIPTION

There are two main sources of events for an application: events that are window based and events that
are application based. Keyboard and mouse events occur within the context of a window, while timer,
system and inter-application events are on an application-level.

All events are stored in a queue of their own and retrieved using the get event functions. The get event
functions will all block until there is an event of the required type. The can functions return a non zero
result when the relevent queue is not empty, and zero when it is empty. The unget event functions put
an event back on to the start of a queue.

The can_event function returns a non-zero result if there are any events for the application to handle. It
also gives some processor time to the library to allow menu handling and window updating to occur.
All of the can functions have this quality, and so they should be called before the get functions which
can block processing.

The application can have one timer, which sends events to the application at regular intervals. The
start_timer function starts this timer with an interval of msec milliseconds and returns a non-zero value
if successful. If the timer could not be started, it will call gerror or return zero if gerror is NULL. The
timer can be halted by calling start_timer with an msec value of zero. The can_timer function returns a
non-zero result if there is at least one timer event in the event queue. The get_timer function dequeues
one queued timer event, or waits until there is one before dequeuing it.

The delay function suspends the application for the required number of milliseconds. This should only
be used for short intervals (less than a second). Longer intervals should use the timer mechanism,
which is non-blocking and allows background processing.

The library associates the keyboard and mouse events with the windows for which they are relevent.
The functions which handle these events thus take a pointer to the window of interest as their first
argument. Only a certain number of the latest events will remain queued for a window.

Characters typed on the keyboard will be sent to the currently active window. Can_key returns a non-
zero result if there are keyboard events queued for the window, and zero otherwise. Get_key dequeues
one character from the keyboard event queue of a window, or waits until there is one. Unget_key puts a
character back on to the window's keyboard event queue.

The characters returned from get_key will be normal ASCII chars unless they are the result of typing
with certain special keys. The function keys, arrow keys and editing keys (insert, delete, home, end,
page up and page down) all generate special key codes. These key codes can be found in the include
file "stdkey.h". The escape, tab and enter/return keys generate normal ASCII escape, horizontal tab and
newline codes.

When the mouse moves or a mouse button is depressed or released in the active window, a new mouse
event is queued for that window by the event mechanism. Mouse clicks in inactive windows which
have the Attentive bit set will also be queued.

Mouse events can also be generated if a mouse button is held down for longer than a certain time. The
set_mouse_delay function sets this time interval to be msec milliseconds. If a mouse button is held
down for longer than this time, the latest mouse event will be repeated in the queue automatically, and
this will continue to happen at the same time interval until the mouse button is released. The effect is
similar to the way keyboard keys repeat when held down. Initially this feature is not active, and it can
be de-activated by called set_mouse_delay with msec equal to zero.

Can_mouse returns a non-zero result if there are mouse events queued for the window, and zero
otherwise. Get_mouse dequeues one mouse structure from the mouse event queue of a window, or
waits until there is one. Unget_mouse puts a mouse structure back on to the window's mouse event
queue.

A mouse structure looks like:

struct mouse { uchar kind; uchar buttons; point xy; };

Kind is a bit field which report what kind of mouse event has just occurred. Buttons is a bit field
which will reflect the current state of the mouse's buttons. The current mouse position is found in xy,
and this will be in the co-ordinate system of the window.

There are other types of events which interact with applications differently. Window manager events
cause the library to call functions related to each window. The close, resize and redraw functions are
called by the library in response to such events. If the close function does not exist for the affected
window, the library merely hides it by default. The resize function occurs before the redraw function,
and both occur after the window manager has changed the size of a window. Redraw can also occur
when a part of a window has been exposed.

Menu events are handled entirely by the library too. Once a menubar has been set up, interaction with
it is through changing menuitem states (disabling, enabling or ticking items). This can be done as an
integral part of a program, or in a single adjust_menus function as specified in the ginit argument.

